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Introduction Graphical Models
Easy and Difficult
Dimer and Ising Models on Planar Graphs

Binary Graphical Models

Forney style - variables on the edges

P@&) = Z [ f(5) £,>0

Z:ZHfa(o—:a) Oab = Opa = *1

partition function

71 = (012,014, 018)

72 = (012,023)

@ Most Probable Configuration = Maximum Likelihood =
Ground State: arg max P(&)

o Marginal Probability: e.g. P(0a5) = >_5\,,, P(7)
e Partition Function: Z — Our main object of interest
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Introduction Graphical Models
rily easy ... but Easy and Difficult
CUHC|II\IU s & Path iun\nul Dimer and Ising Models on Planar Graphs

Easy & Difficult Boolean Problems

@ Any graphical problems on a tree (Bethe-Peierls, Dynamical
Programming, BP, TAP and other names)

Ground State of a Rand. Field Ferrom. Ising model on any graph
Partition function of planar Ising & Dimer models

Finding if 2-SAT is satisfiable

Decoding over Binary Erasure Channel = XOR-SAT

Some network flow problems (max-flow, min-cut, shortest path, etc)
Minimal Perfect Matching Problem

Some special cases of Integer Programming (TUM)

Typical graphical problem, with loops and factor functions of a
general position, is DIFFICULT
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Introduction Graphical Models
Easy and Difficult
Dimer and Ising Models on Planar Graphs

Glassy Ising & Dimer Models on a Planar Graph

Partition Function of J;; = 0 Ising Model, o; = £1

T

7= e <Z(u)er JijUiO'j> ! : /
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Introduction Graphical Models
Easy and Difficult
Dimer and Ising Models on Planar Graphs

Ising & Dimer Classics

L. Onsager, Crystal Statistics, Phys.Rev. 65, 117 (1944)

M. Kac, J.C. Ward, A combinatorial solution of the Two-dimensional Ising
Model, Phys. Rev. 88, 1332 (1952)

@ C.A. Hurst and H.S. Green, New Solution of the Ising Problem for a
Rectangular Lattice, J.of Chem.Phys. 33, 1059 (1960)

@ M.E. Fisher, Statistical Mechanics on a Plane Lattice, Phys.Rev 124, 1664
(1961)

@ P.W. Kasteleyn, The statistics of dimers on a lattice, Physics 27, 1209 (1961)

@ P.W. Kasteleyn, Dimer Statistics and Phase Transitions, J. Math. Phys. 4, 287
(1963)

@ M.E. Fisher, On the dimer solution of planar Ising models, J. Math. Phys. 7,
1776 (1966)

@ F. Barahona, On the computational complexity of Ising spin glass models,
J.Phys. A 15, 3241 (1982)
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Introduction Graphical Models
Easy and Difficult
Dimer and Ising Models on Planar Graphs

Pfaffian solution of the Matching problem

1 3
1 3
Z = 212234—|—214223 =V Det Pf[A]
0 —zizp 0 —z14
1 3
A— | ta2 0 +z3 —2z:
0 —z3 0 +z34
+z14 +2z4 —2z34 O
Odd-face [Kasteleyn] rule (for signs) 1 3

Direct edges of the graph such that
for every internal face the number of
edges oriented clockwise is odd
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Introduction Graphical Models
Easy and Difficult
Dimer and Ising Models on Planar Graphs

Planar Spin Glass and Dimer Matching Problems

The Pfaffian formula with the “odd-face” orientation rule extends
to any planar graph thus proving constructively that

@ Counting weighted number of dimer matchings on a planar
graph is easy

o Calculating partition function of the spin glass Ising model on
a planar graph is easy

Planar is generally difficult [Barahona '82]

@ Planar spin-glass problem with magnetic field is difficult

@ Dimer-monomer matching is difficult even in the planar case
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Holographic Algorithms & Gauge Transformations
Planar is not necessarily easy ... but Edge-Binary models of degree < 3

Edge-Binary Wick Models (of arbitrary degree)

Outline

© Planar is not necessarily easy ... but
@ Holographic Algorithms & Gauge Transformations
@ Edge-Binary models of degree < 3
o Edge-Binary Wick Models (of arbitrary degree)
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Holographic Algorithms & Gauge Transformations
Planar is not necessarily easy ... but Edge-Binary models of degree < 3

Edge-Binary Wick Models (of arbitrary degree)

Are there other graphical models which are easy?
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Holographic Algorithms & Gauge nsformations
Planar is not necessarily easy ... but Edge-Binary models of degree

Edge-Binary Wick Models (of a?l)itrary degree)

Are there other graphical models which are easy?

Holographic Algorithms [Valiant '02-'08]

@ reduction to dimers via

@ ‘“classical” one-to-one gadgets
(e.g. Ising model to dimer model)

@ “holographic” gadgets (e.g. ice model to dimer model)

@ resulted in discovery of variety of new easy planar models

A\
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Holographic Algorithms & Gauge Transformations
Planar is not necessarily easy ... but Edge-Binary models of degree < 3

Edge-Binary Wick Models (of arbitrary degree)

Are there other graphical models which are easy?
Holographic Algorithms [Valiant '02-'08]

@ reduction to dimers via

@ ‘“classical” one-to-one gadgets
(e.g. Ising model to dimer model)

@ “holographic” gadgets (e.g. ice model to dimer model)

@ resulted in discovery of variety of new easy planar models

A\

Gauge Transformations [Chertkov, Chernyak '06-'09]
@ Equivalent to the holographic gadgets
(different gauges = different transformations)
@ Belief Propagation (BP)
is one special choice of the gauge freedom
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Holographic Algorithms & Gauge Transformations
Planar is not necessarily easy ... but Edge-Binary models of degree < 3
Edge-Binary Wick Models (of arbitrary degree)

BP+ for Planar [degree < 3]

Loop Series (general)
[MC,Chernyak '06]

Z=2y-2z, z=1+4+) crc

Summing 2-regular partition is easy!! [MC,Chernyak, Teodorescu '08]

Zs =202, Zs=1+ ZVQGC dale=2

Efficient Approximate Scheme
[Gomez,MC,Kappen '09]

http://arXiv.org/abs/0901.0786
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Holographic Algorithms & Gauge Transformations
Planar is not necessarily easy ... but Edge-Binary models of degree < 3
Edge-Binary Wick Models (of arbitrary degree)

Easy Models of degree < 3  [MC,Chernyak, Teodorescu '08]

Generic planar problem is difficult J

A planar problem is easy if

@ the factor functions satisfy

(a,p)e€

®
R o B N g
&a b

X (oap — tanh (nap + Mpa)) =0

where 7 are messages from a BP

(c)
solution for the model @@@@@
@ i.e. when all (!!) “three-colorings” are
zero after a BP-transformation [BP
gauge= all (!!) “one-colorings” are zero]

“three-colorings” are shown in red
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Holographic Algorithms & Gauge Transformations

Planar is not necessarily easy ... but Edge-Binary models of degree < 3
Edge-Binary Wick Models (of arbitrary degree)

Easy Models of degree < 3 (lI)

To describe the family of easy edge-binary models of degree not larger
than three (partition function is reducible to Pfaffian of a
|G1| x |G1|-dimensional skew-symmetric matrix) one needs to:

Item #1: Generate an arbitrary factor-function set which Y Y

WE(3,) =0 if Y,., 0 # 0(mod 2) Y oY

satisfies: Va:

Item #2: Apply an arbitrary skew-orthogonal Gauge-transformation:

W(r,) - fo(wa) =3 (H Gab(wab,ﬂ;p) W ()

’ ~
A b~a

V{a,b} € G1: Y Gap(m, 7' )Gpa(m,m'") = 5(n", ")

Z:Z H fa(ma) :Z H (Z <H Gab(ﬂ'sbvﬂ';b)) W(a)(ﬂ'a))

™ acGy ™ acGy

’ b~a
Ta

Generalize construction (Item #1) to an arbitrary planar graph

ht
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Holographic Algorithms & Gauge Transformations
Planar is not necessarily easy ... but Edge-Binary models of degree < 3

Edge-Binary Wick Models (of arbitrary degree)

Edge Binary Wick (EBW) Models [Chernyak, MC '09]

_ (b)
Zegw (W) = > 11 W oo saok }={ala~biv,p=1}
Y={vap} €21(G:Z3) beG

number of crossings (mod 2)

—
- —

p<p’
(®) (») (®) 2 Cot ot
= = (= PP EE
Wiar, a0y = > Weag o Weap oy = )
£EP([2k—1])

Examples of 6-colorings of a EBW-model 6 vertex

W6 Was W3y [zero crossing] — Wi W35 Wyg [one crossing] Wi3 Wos Wye [two crossings]  — Wja Was Wag [three crossings]

@ Equivalent to Gaussian Grassman Models on the same graph

@ Partition function is Pfaffian of a |G1| x |G1| matrix
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Holographic Algorithms & Gauge Transformations

Edge-Binary models of degree < 3

Planar is not necessarily easy ... but

Edge-Binary Wick Models (of arbitrary degree)

Related Grassmann/Fermion Models

Vertex Gaussian Grassmann Graphical (VG®) Models

(@) /(2 1
[ ep (% (bqagﬂegl PabSpe Wy LPac) exp (5 Y (a,b)€64 ‘PabgabWba) (;[b) deap
[ exp (% Y (ab)eGy %bf’ab%a) (Hb) deap
a,

M, Hy = { ﬂ({? thi),
(H(s,0:0))

ZVG3(" o; W)

i = (a,b) & j = (a,c), where b # c ~ a,
Tabs i=(a,b), &j=(b,a).

Grassmann (anti-commuting) variables: V(a, b), (¢, d) € G1  YapPed = —PcdPab
Berezin (formal) integration rules: V(a,b) € G1 : [ dpa =0, [ @apdpa, =1

v

Main Theorem of [Chernyak,MC '09]
Q@ Jdo,¢==+1:

st Zyga(s, o3 W) = Zegw (W)

@ The special configuration of o, ¢ corresponds to Kastelyan (spinor) orientation
on the planar graph
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What did we learn?
Where do we go from here?

Conclusions & Path forward

To describe the family of easy edge-binary models on an arbitrary planar
graph G (partition function is reducible to Pfaffian of a
|G1| X |G1|-dimensional skew-symmetric matrix)

v

o Generate an arbitrary Vertex Gaussian Grassmann
binary-Gauge (VG®) Model on the graph

o Fix the binary-gauge according to the Kasteleyn (spinor) rule
on the extended graph

@ Construct respective Edge-Binary Wick model on the original
graph

@ Apply an arbitrary skew-orthogonal (holographic)
gauge/transformation

The partition function of the resulting model is an explicitly known Pfaffian
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What did we learn?
Where do we go from here?

Conclusions & Path forward

@ Use the described hierarchy of easy planar models as a basis
for efficient variational approximation of generic (difficult)
planar problems. (The approach may also be useful for
building efficient variational matrix-product state wave
functions for quantum planar models.)

@ Extend the construction to Wick Gaussian models on surface
graphs of nonzero genus, in the spirit of Kastelyan,
Gallucio-Loebl, Cimasoni-Reshetikhin.

@ Study Wick Gaussian models on non-planar but Pfaffian

orientable or k-Pfaffian orientable graphs (where any dimer
model on surface graph of genus g is 2%6-Pfaffian orientable).

v
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Example (1):

Ising model o ==+1
P(F) = Z Lexp (Z(iJ) J,-J'U,'aj)

Jjj defines the graph (lattice)

v

Graphical Representation

Variables are usually associated with vertexes ... but transformation to
the Forney graph (variables on the edges) is straightforward

A\

@ Ferromagnetic (J;j < 0), Anti-ferromagnetic (J; > 0) and Frustrated/Glassy
@ Magnetization (order parameter) and Ground State
@ Thermodynamic Limit, N — oo

@ Phase Transitions
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Example (2):

Probabilistic Reconstruction (Statistical Inference)

Oorig

original

data
5orig eC
codeword

noisy channel

P(x]5)

X

corrupted
data:
log-likelihood

magnetic field

statistical

inference

QL

possible
preimage

cgel
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Example (2):

Probabilistic Reconstruction (Statistical Inference)

= X
corrupted
noisy channel data:
P(X|0) log-likelihood

magnetic field

statistical

inference

QL

possible
preimage

cgel
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Example (2):

Probabilistic Reconstruction (Statistical Inference)

= X
corrupted
noisy channel data:
P(X|0) log-likelihood

magnetic field

=

statistical

inference

Qu

possible
preimage
gecC
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Example (2):

Probabilistic Reconstruction (Statistical Inference)

= X = o
corrupted .
. o possible
noisy channel data: statistical .
2= - . reimage
P(X|U) log-likelihood inference po__, c Cg
magnetic field

Maximum Likelihood

Marginalization

ML(X) = arg max P(X|7) o7 (X) = arg max Z P(X|5)

5\0’,‘

Counting (Partition Function): Z(X) =5 P(X|&)
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Grassmann (fermion) Calculus for Pfaffians

Grassman Variables on Vertexes

V(a,b) € Ge: 005+ 0,0, =0 /dezo, /9d0:1

Pfaffian as a Gaussian Berezin Integral over the Fermions
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Gauge Transformations, BP, Loop Calculus

Gauge Transformations Chertkov, Chernyak '06

Local Gauge, G, Transformations

Z= Z:Ha f:?(&a)a Ty = (Uab;0367 e )

Oap — Opy = +1

f:a(a"a = (Uab;"')) —
ZU;b Gap (O’ab, U;b) ﬁa(a;b, . )
Zﬂab Gab(0ab, 0") Gpa(oap, 0’) = 0(c’, 0")

The partition function is invariant under any G-gauge!

7 — Z: H f, (5-’3) = Z: H(Z fa(gg) H Gab(aab7 U;b))

bea
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Gauge Transformations, BP, Loop Calculus

Belief Propagation as a Gauge Fixing Chertkov, Chernyak '06
2= Y T166) = L TI( X 4 T Guslrtn o))
g a o a al bea
Z=  Z(G) + > Z.(G)
Il possible colorings of the graph
ground state ap & grap
F=41 7#+1, excited states
Belief Propagation Gauge Ya& Vbe a:
c#b
Zf (¢ G( p) (0ap = —1,0%, H (bp) (+1,05.)=0
cEa

No loose BLUE=colored edges at any vertex of the graph!
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Gauge Transformations, BP, Loop Calculus

Belief Propagation as a Gauge Fixing (I1)

Va& Vbea:
M= = VI B O sum— product
@ o (bp) c#b
PR W Lcr;b)cn o) =0 ) efGnal)=st ¥ @) ] 660l
cEa
'S 0y Gob(Tap> 7' Goal 7 ") = 8(” ") s

Belief Propagation in terms of Messages

G bp)( o) = exp (07ab) 7 bp)( 10) = exp (—07pa)
2/ cosh(nap + Nba) 2\/C°Sh(77ab + Mba)

=T 6@ I G (41, 0%)

S fGa)exp [ Y Gactiac | (0ab — tanh (1125 + 1ba)) = 0

&a\oab cea

= o fa(ga) eXP(Z beEa O'abnab) _ eXP(U(nab‘i’T]ba))
2 (Ua) - 253 fa(da) eXp(ZbEa O'ab77ab)7 bab(O’) T 2o exp(o(naptnpa))
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Gauge Transformations, BP, Loop Calculus

Loop Series:

Exact (!!) expression in terms of BP

z=>"1I%G) =2 <1+Zr(C)>
s 4 C

HCHB
(€)= —="—=1]
[T (1—m2)
(abjeC =0 st

C € Generalized Loops = Loops without loose ends

Z b 0'3)0' b
Z b3 bp a) H Oab — mab

be€a,C

Chertkov,Chernyak '06

The Loop Series is finite
All terms in the series are
calculated within BP

BP is exact on a tree

BP is a Gauge fixing condition.
Other choices of Gauges would
lead to different representation.
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Gauge Transformations, BP, Loop Calculus

Ice Model [vertexes of max degree 3]

#PL-3-NAE-ICE [Valiant '02]
@ Input: A planar graph G = (V;E) of maximum degree 3.

@ Output: The number of orientations (arrows) such that no node has all the
edges directed towards it or away from it.

From arrows to binary variables

Zim =Y. ( 11 fa(*a)) ( 11 ga—b(”a,a—b”b,a—b))

{a,b}€G;

@ Edge {a, b} is broken in two by
insertion of a — b vertex

. . . 1, 3 b,c €dg(a), st Taa_p F Taaz

@ Introduce binary variables s.t. if 0 7 otherwise Heme
a_)b:>7ra,a—b:07ﬂ'b,a—b:1 P { 1 Taaeh # Tbab

bHQZ}ﬂ'a,a,bZLTK'b’a,b:O 0, otherwise
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Gauge Transformations, BP, Loop Calculus

Ice Model [vertexes of max degree 3] Il

General Gauge Transformation

fo(mwa) — Fa(mwa) = (H Gab(Tab ™ )) fa(m})

b~a
V{a,b} €G1: Y G, ") Gpa(m, 7'’y = &(x’, 7"")
Z= Z H ?a(ﬂ'a) = Z H (Z (H Gab("amﬂ';b)) fa("'a))
™ acgGy ™ a€gy \ w, \b~a

Gauge Transformation for the Ice model

glie) _ 1 101 . Oy _ li Ta,a—b = Tha—b f(l)
beoen=—72l S 2 Bab(m) =4 —1, Taab=Tpap=

V2 0, otherwise
. 3 1, Ta,a—1 = Ma,a—2 = Ta,a—3 =0
fa(ma,a—1) Ta,a—2, Ta,a—3) = B —1/3, 2iTaa—i =2
2 0, otherwise
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